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On the creep rupture life prediction
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Combined effects of stress, rA, and fracture cavitation on the creep rupture life, tR, have been
studied in conventionally cast MAR-M 002 alloy tested at 1173K (900 °C) over a limited range
of stress (rA\200—400 MPa). It is predicted that the creep fracture cavity growth is controlled
by the coupled power-law creep with the grain-boundary diffusion mechanism. On the basis
of this prediction the Edward—Ashby model overestimates the creep rupture life although
this model correctly describes the trend in the data. The observation of a linearity between
the cavity density, NA, and the product eRtRr4

A indicates that this relationship can be used to
predict the creep time, tR, where eR is the rupture strain. Furthermore, another empirical
method is the creep-fracture parameter, Kf\rf(pac)1/2, approach, developed using the
modified Griffith—Irwin type of relationship, which can also be used to predict the creep
rupture life in the present alloy, where rf is the creep fracture stress (or the applied stress, rA)
and ac the crack (or cavity) size. 1998 Kluwer Academic Publishers

1. Introduction
Under high-temperature creep conditions, fracture usu-
ally occurs in an intergranular manner by the nuclea-
tion, growth and link-up of grain-boundary (GB)
cavities which leads to the crack formation. The model-
ling of the growth of intergranular cavities during creep
has attracted considerable attention in the last 20 years
[1—5]. Creep cavitation can grow by mechanisms con-
trolled by GB diffusion, by surface diffusion, by power-
law creep (PLC), and by any combination of two of
these mechanisms. The problem of coupling diffusive
cavity growth with PLC has been analysed by Beere
and Speight [1], Edward and Ashby [2], Needleman
and Rice [3] and Chen and Argon [4]. It was suggested
that the GB area between cavities should be divided
into two regions: one which is adjacent to the cavities
where GB diffusion occurs, and the other which is
midway between the cavities where PLC occurs.

During the creep of nickel-based superalloys at
elevated temperatures a number of micromechanistic
processes (i.e., c@ coarsening, grain structure, segrega-
tion, microporosity, cavitation on the GB carbides,
etc.) occurs which damage the structural integrity of
the material. The useful life of a polycrystalline mater-
ial is limited by the combined effects of these microm-
echanistic processes. It is therefore important to
identify and evaluate the nature and development of
the damage accumulation which leads to failure.
Knowledge of the operational damage could be useful
in a number of ways; it would provide an understand-
ing of the behaviour of the material in service condi-
tions and hence contribute to more reliable design
performance.

In the present investigation we aim at determining
combined effects of stress deformation and fracture
characteristics of the conventionally cast (CC) MAR-
M 002 superalloy.

2. Experimental procedure
The material used in the present study is a commercial
nickel-based superalloy, MAR-M 002, of composition
2.5 wt% Ta, 10 wt% W, 9.0 wt% Cr, 5.5wt% Al,
1.5wt% Ti, 10wt% Co, 1.5wt% Hf, 0.05wt% Zr,
0.14wt% C, 0.015wt% B and balance nickel. In order
to produce a variety of microstructural distributions,
including grain morphology, c@ phase and carbide
dispersions, the creep specimens were deliberately cast
to shape at different solidification rates. After casting,
the creep specimens were machined to 4 mm gauge
diameter. Creep testing was carried out to failure at
1173K (900 °C) using a uniaxial constant load in air.
Stresses ranging from 200 to 400MPa were applied to
creep specimens. The temperature was kept constant
within $0.5K. The creep elongation was recorded
continuously using differential transformers. For the
cavity measurements, Six scanning electron cavity
micrographs with adjoining fields from the gold-
coated samples were taken from the entire cross-sec-
tions of fractured specimens. The Cambridge Instru-
ments Q-520 system was used for the quantitative
evaluations of the cavity size (mean surface area, S),
number of cavity per cross-section (cavity density, N

A
,

and cavity volume fraction, f
#
). The linear mean cavity

size, a
#
, was evaluated as the square root of the mean

cavity area (i.e., S1@2), whereas the intercavity spacing,
¸, was determined using the following formula:
¸"0.5/N1@2

A
.

3. Results and discussion
3.1. Fracture cavitation
A quantitative assessment of the kinetics of inter-
granular cavity damage accumulation was carried out
on fractured specimens. Fig. 1 shows the effect of
applied stress on the cavity volume fraction, f

#
; there is

0022—2461 ( 1998 Kluwer Academic Publishers 3629



Figure 1 Effect of applied stress, r
A
, on the cavity volume fraction, f

#
.

a maximum in the curve. Different cavity morpholo-
gies as a function of stress are given in Fig. 2. These
micrographs indicate that the cavity morphologies
exist as the round type cavities (i.e., Fig. 2a and e) and
the dendritic shape cavities (i.e., Fig. 2c); these cavities
are usually associated with the eutectic pools. The
cavity shapes become more dendritic when their vol-
ume fraction increases (from point a through b to
point c or from point e to point d in Fig. 1 (i.e., Fig.
2a PFig. 2b PFig. 2c or eP Fig. 2d).

3.2. Creep life predictions
3.2.1. Parametric approach
Cavity nucleation is dependent both on strain and on
stress level. Several workers [6—10] have proposed
that cavity nuclation rate, N0

A
, is directly proportional

to the creep rate, e5 , i.e., N0
A
"K

1
e5 , where K

1
is the

nucleation rate coefficient dependent primarily on the
density of carbides [11]. The above expression can be
integrated with respect to time which leads to an
expected linear dependence of cavity density, N

A
, with

creep strain, e
R
, i.e., N

A
"K

1
e
R
, assuming that the rate

of nucleation is constant with time. Therefore, on the
basis of above discussion, and as in the literature
[6—10], it is assumed that the cavity density, N

A
, may

be expressed by the functional relation

N
A
"f (e

R
, t

R
, r

A
) (1)

or

N
A
"Ke

R
t
R
rm
A

(2)

where e
R

is the creep rupture strain, t
R

is the creep
rupture life, r

A
is the applied stress, and K and m are

constants.
The cavity density, N

A
, is plotted against the e

R
t
R
r4

A
product as shown in Fig. 3 which reveals quite a good
linear correlation. A parametric approach of this type
can be used satisfactorily by assuming a stress expo-
nent of m"4 [6, 9]. The fact that the number, N

A
, of

cavities can be correlated with the rupture strain, time

and stress implies that cavity nucleation is controlled
by the same mechanism that is controlling creep de-
formation and fracture processes. Futhermore, Equa-
tion 2 gives the relative contribution of each variable
to the creep damage, N

A
, independently of the effect of

the other variables. The linear correlation between
N

A
and e

R
t
R
r4
A

(Fig. 3) indicates that the nucleation
of cavity appeared to start right after loading
and proceeded steadily through all creep stages,
and that it is the cavity growth process which
dominantly affected creep rupture life, t

R
. In the

past, a linear relationship has been observed between
the cavity volume fraction, f

#
, and the e

R
t
R
rm product

for a number of single-phase materials [12—14] and
engineering alloys [15—16]. The stress exponent m was
7.5 for pure nickel, which indicates the difference be-
tween the behaviours of pure nickel and commercial
nickel-based alloys such as IN-100 [16] and present
alloy.

3.2.2. Creep crack growth approach
Several reports exists in the literature of the applica-
tion of elasto-plastic fracture mechanics to describe
intergranular creep fracture [17]. Intergranular creep
fracture is a multiple-crack-growth and interlinkage
fracture mode which involves plastic deformation. In
an attempt to modify elasto-plastic fracture mechanics
to describe such a fracture mode an empirical stress-
intensity factor, K

CR
, approach has been introduced

[18, 19]. The theory of elasto-plastic fracture mechan-
ics cannot be directly applied to creep fracture and in
order to clarify the situation it was proposed [20] that
the stress-intensity factor, K

CR
, should simply be

called a rupture parameter, K
&
, which makes no claims

to be a measure of stress, r
A
, or strain in front of an

advancing crack tip. The rupture parameter, K
&
, is

purely empirical and calculated on the basis of Equa-
tion 5 but will be shown to be of value in the predic-
tion of creep rupture life, t

R
.

Measurements of the crack velocity aR during creep
rupture reveal that it varies with the applied stress-
intensity factor, K, in the form of a power law [21, 22]

aR "B Km (3)

where B is a constant that depends exponentially on
temperature, and the exponent m takes value between
1 and 6 [23, 24] although vastly higher values have
been reported [25] but for a particular material is
usually close to the value of the stress exponent, n, of
minimum creep rate, e5

.
, in power-law creep: e5

.
Jrn

A
.

The crack velocity a5 is therefore strongly dependent
on both the stress-intensity factor and the temper-
ature. Therefore, the stress intensity factor, K, has
sometimes been used in the past to characterize the
creep crack growth (CCG) (or crack velocity), aR , under
small-scale creep conditions.

In the present study, on the basis of the previous
discussion given above a modified Griffith—Irwin type
of relation is used to investigate the influence of the
applied stress on the cavity (microcrack) size, a

#
, to

produce final crack propagation. The plot of cavity
size, a

#
, observed in each specimen against the applied

3630



stress, r
A
, is shown in Fig. 4 in terms of the Equation.

r
&
JA

EG
#

pa
#
B
1@2

(4)

where r
&
is the applied stress for fracture (or r

A
), E is

Young’s modulus and G
#

is an empirical parameter
related to the energy release rate. The decrease in
crack size with increase in stress level (Fig. 4) indicates
that crack growth past a GB carbide particle is diffi-
cult. This variation in crack size with stress is to be
expected since the time for cracks to grow into final
crack size increases with a decrease in stress level
[5, 13]. We can rewrite Equation 4 as follows:

K
&
Jr

&Apa@
#B1@2 (5)

where K
&
"(EG

#
)1@2 is called an empirical rupture

parameter (or the creep-fracture parameter), and a@
#
is

the maximum crack size. Since it is not possible to
determine a@

#
reliably we have used a more reliable and

Figure 2 Different cavity morphologies observed at different stres-
ses. The cavity shapes change from a rounder shape in (a) to the
more dendritic type through (b) to (c) or from the micrograph (e) to
(d). (Note that cavity morphologies correspond to those data of
points a, b, c, d and e in Fig. 1.)

practical parameter of mean crack size, a
#
, and as-

sumed that a
#

is the critical parameter for the final
fracture and somehow related to a@

#
. The empirical

parameter, G
#
, was estimated using the average crack

size, a
#
, in the fractured samples (E was taken [26] to

be approximately 15.5]1010 N m~2 at 900 °C for the
present material). The variation in G

#
suggests that

various microstructural parameters such as the grain
size, GB carbide particles, and the cavitation, affect it.
In fact, the effect of microstructure such as the cavita-
tion density, N

A
, on G

#
is shown in Fig. 5. As the

logarithmic plot of G
#

against N
A

indicates in this
figure the following type of correlation exists between
G

#
and N

A
:

G
#
J 1

N1@3
A

(6)

Previous work [11] showed that there was a direct
correlation between the cavity and GB carbide par-
ticle densities for the present material. Therefore, it is
suggested that decreasing the carbide particle density
(number of carbide particles per unit area) increases
the empirical parameter, G

#
, related to fracture the GB

carbide-matrix surface area (decohesion).
A plot of the creep-fracture parameter, K

&
, against

the creep rupture life, t
R
, is illustrated in Fig. 6, which

yields the following type of relationship:

K
&
J 1

t3.6
R

(7)
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Figure 3 Linear dependence of the cavity population, N
A
, on the

e
R

t
R

r4
A

product.

Figure 4 Inverse linear dependence of the crack size, a
#
, on the

applied stress, r
A
.

Therefore, the empirical rupture parameter approach,
K

&
, can be used to predict t

R
. The exponent for K

&
is

close to the effective stress exponent (i.e., n"4) in
power-law creep in nickel-based superalloys [27].
This suggests that the cavity growth process is some-
how related to the PLC [25] which supports the
previous findings (see Equation 3). From Equations
3 and 7 it is suggested that accelerating the CCG rate
(or crack velocity aR ) increases the creep-fracture para-
meter, K

&
, and in turn causes the creep rupture life, t

R
,

to deteriorate.
From the cavities observed after creep fracture the

total length of damaged GB (or the GB damage accu-

Figure 5 Inverse linear dependence of G
#
on N

A
on a log—log scale.

Figure 6 Inverse linear dependence of the creep-fracture parameter,
K

&
, on the creep rupture life: K

&
Jt~1@3.6

R
.

mulation), ¸
T
, was calculated to investigate the effect

of the damage accumulation on t
R
:

¸
T
"N

A
a
#

(8)
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Figure 7 Effect of the applied stress on the damage accumulation, ¸
T
.

Figure 8 Influence of the damage accumulation, ¸
T
, on the creep

rupture life.

The GB damage accumulation, ¸
T
, was plotted

against the applied stress, r
A
, as shown in Fig. 7,

indicating that the extent of damage increases with an
increase in stress in the following way:

¸
T
Jr3,3

A
(9)

This relationship indicates that the extent of damage is
reasonably sensitive to the stress. Fig. 8 shows the
influence of the GB damage, ¸

T
, on the creep rupture

life, which indicates that decreasing the GB damage
accumulation first slowly increases t

R
down to a criti-

cal value of ¸
T

and further, on decreasing ¸
T

below
that value (+about 20mm~1), t

R
improves sharply.

3.2.3. Coupled power-law creep
and grain-boundary diffusion
mechanism approach

The size and spacing of the cavities is such that cavity
growth is expected to be controlled by the coupling of
GB diffusion and PLC. The rupture properties of

these samples were studied over a range of stresses and
the results are compared with the predictions of vari-
ous theoretical treatments of cavity growth.

The fracture process includes the nucleation and
growth of creep cavities, the coalescence of cavities
into microcracks, the interlinkage of microcracks to
form a macroscopic crack and propagation of a macro-
scopic crack across the components, leading to the
ultimate fracture. Among these steps, creep cavity
growth is usually the rate-controlling steps and hence
has been the subject of extensive study for the past
three decades. Creep cavitation can grow by mecha-
nisms controlled by GB diffusion, by surface diffusion,
by PLC, and by any combination of two of these
mechanisms. The problem of coupling diffusive cavity
growth with PLC has been analysed by different
workers [1—4]. It was suggested by these workers that
the GB area between cavities should be divided into
two regions: one which is adjacent to the cavities,
where GB diffusion occurs, and the other which is
midway between the cavities, where PLC occurs.
Needleman and Rice [3] attempted to solve the prob-
lem of coupled cavity growth by diffusion and PLC
exactly in terms of a stress and temperature-dependent
‘‘material length scale’’ or characteristic diffusion
length, ":

""A
D

B
d
B
)r

=
(k¹e5 B

1@3
(10)

where D
B

(m2 s~1) is the GB diffusion rate constant,
d
B
(m) the GB width, ) (m3) the atomic volume, r

=
(or

r
A
) the applied stress, k Boltzmann’s constant (equal

to 1.38]10~23 J K~1), ¹ the absolute temperature
and e5

=
the remote creep rate (or minimum creep rate,

e5
.
). The contribution of dislocation creep (i.e., PLC)

to cavity growth is shown to be negligible when
"'¸. Significant interaction occurs when "(¸.
Edward and Ashby [2] determined the size of the
diffusional zone by the dimensionless parameter P*:

P*" 1

10 A
4"3

¸3 B
2@n

(11)

This parameter, P*, is also useful for the determina-
tion of which mode of cavity growth mechanism dom-
inates the creep life under various creep conditions. It
was predicted [2] that, for P**1 (i.e., larger values of
length parameter or small cavity spacings, ¸), there is
a negligible contribution of PLC to cavity growth and
rupture process is controlled by the GB diffusion.
When P*)10~3, the diffusional growth contributes
negligibly and PLC dominates. Within the above two
bounds of P*, (i.e., 10~3(P*(1), both the diffu-
sional and the PLC growth contributions are impor-
tant in determining the creep rupture life, t

R
.

Using the following material constants [5] for
MAR-M002 alloy the values of " and P* were cal-
culated for various e5

.
and ¸ values observed in the

present investigation for MAR-M002 alloy tested at
various stress levels, r

A
or r

=
:

d
0B

D
0B

"2.8]10~15m3 s~1

)"1.1]10~29m3

Q
B
"115kJ mol~1
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TABLE I Data for " and P* calculated under various creep
conditions (P* was calculated using Equation 11)

Specimen r
A

" L P*
(MPa) (lm) (lm)

1 200 130 1.4 181
2 250 69 7.3 5.8
3 275 145 12.8 7.6
4 300 267 7.1 46.3
5 350 37 3.4 7.3
6 400 27 1.5 15.6

where d
0B

D
0B

is the pre-exponential term for the GB
diffusion constant, Q

B
is the activation energy for GB

diffusion and n is taken to be the effective stress
exponent (n"4) in e5

.
Jr/

A
[27]. Note that d

B
D

B
was

calculated using the following Arrhenius-type equa-
tion [28]:

d
B
D

B
"d

0B
D

0B
expA!

Q
B

R¹ B (12)

with R the gas constant (8.31 Jmol~1 K~1).
Under the present creep conditions (¹"1173 K;

r
=

"200—400 MPa) depending on the observed
values of ¸ and e5

=
(or e5

.
) for various values of applied

stress the following values of " and P* (as given in
Table I) were determined:

"+27—270 lm ('¸+1.5—13 lm); P*+7—180'1.

These numerical calculations suggest that there is
a negligible contribution of creep flow (or PLC) to
cavity growth, and so the rupture process in CC
MAR-M 002 under the present creep conditions is
predicted to be controlled by GB diffusion mecha-
nism. Cocks and Ashby [5] have given the approxim-
ate analytical equation for the time to rupture, t

R
,

under a constant-load condition for the GB diffusion
mechanism alone as

t
R
"t

/
# 2

3'
0
e5
0
G f 3@2

# ClnA
1

f
#
B#2

3 D
!f 3@2

* ClnA
1

f
*
B#2

3 DH
r
0

r
1

(13)

where t
/

is the time to nucleate a void (or cavity),
'

0
the dimensionless quantity which appears when

GB diffusion and PLC are coupled, e5
0

(s~1) the
creep constant, f

*
the initial area fraction of cavity

holes, r
0

the mean stress in damaged region when
cavities are heterogeneously distributed and r

1
the

principal stress. '
0

is defined [5] as the material
property, by

'
0
"2d

B
D

B
)

k¹¸3

r
0

r
1

(14)

Neglecting t
/
and f

*
(because these terms are generally

small) and assuming the other factors (i.e., d
B
, D

B
,

e5
0
and r

0
) in Equations 13 and 14 to be constant, then

Equation (13) can be written as

t
R
J¸3f 3@2

#
r

A
A
2

3
!ln( f

c
)B"B (15)

Figure 9 The plotting of the observed creep rupture life against the
calculated parameter, B (Equation 15) when the cavity growth is
controlled by the GB diffusion mechanism.

(Note that, for polycrystalline materials, r
1

may be
taken to be equal to r

A
/2). Equation 15 indicates that

the creep rupture life is propotional to the parameter,
B, for the GB diffusion mechanism. Fig. 9 gives the
plotting of the observed creep rupture life, t

R
, against

the calculated parameter, B, according to equation 15
which indicates a complicated relationship. Therefore,
from Fig. 9 it is clearly seen that the operational cavity
growth mechanism in the tertiary creep region is not
the GB diffusion mechanism.

To predict the cavity growth mechanism in the
tertiary creep region the dimensionless parameter, P*,
was recalculated using the following expression [2]:

P*" 1

10 C2'@
0A

r
0

r
1
B
n~1

D
2@n

(16)

where r
0
(Nm~2) is the creep constant and n the stress

exponent in the PLC expression (n was taken to be 4).
'@

0
is defined [2] as the important material property,

by

'@
0
"b f 3@2

#
lnA

1

f
#
B A

1

(1!f
#
)/

!(1!f
#
)BA

r
%

r
0
B
nr

0
r
1

(17)

For the numerical calculations of '@
0

the result for
simple tension as in the present case was obtained [2]
by setting b"0.6 and r

%
"r

1
(where r

%
is the equiva-

lent tensile stress). For polycrystalline materials,
r
1

may be taken to be equal to r
A
/2. The constant

r
0

was taken [3] to be 4097]106 N m~2. Using the
experimental cavity parameter, f

#
, and various applied

stresses, r
A

in each creep test the parameter, P*,
(Equation 16) was found to vary between about
20]10~3 and about 35]10~3 (i.e., 1'P*'10~3).
(Data for P* for various creep test conditions are
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TABLE II Modified version of P* (using Equation 16)

Specimen r
A

'@
0
]106 P*]103

(MPa)

1 200 2.00 18.6
2 250 12.0 32.5
3 275 16.5 33.0
4 300 19.8 31.7
5 350 20.4 25.6
6 400 17.1 19.2

given in Table II). These results for the P* parameter
indicates that the creep fracture cavity growth is con-
trolled by the coupled PLC with the GB diffusion
mechanism. Cocks and Ashby [5] have also given an
approximate analytical equation for the rupture time,
t
R
, under the constant-load condition for coupled GB

diffusion and PLC as

t
R
"t

/
#2

3

( f "
5
)3@2

'@
0
e5
0
AlnA

1

f "
5
B#2

3 B
r

0
r

1

# 1

[b (n#1)e5
0
]

]lnA
1

(n#1) f "
5
BA

r
0

r
%
B
n

(18)

where f "
5

is the area fraction of cavity holes at
transition from growth by GB diffusion to PLC
growth in approximate analysis, e5

0
(s~1) is the creep

constant, and r
%
is the von Mises equivalent stress and

is taken to be the axial stress r
1

(or r
A
) in simple

tension. The critical area fraction, f "
5
, at which the

change in mechanism from the GB diffusion to the
PLC occurs can be solved [2]:

f "
5

" 1

[d(ln d!1)]3@2
(19)

where

d"4(n#1)

3'@
0
A
r
%

r
0
B
n r

0
r
1

b (20)

The creep rupture life, t
R
, predicted using Equation 18

depends on the quantity '@
0

and on the applied stress
r
A
. For the prediction of the creep rupture life using

Equation 18 the following constants were used for
various applied stress (r

A
"200—400 MPa) and ob-

served cavity parameter, f
#
: r

0
+4097]106

N m~2 [3]; e5
0
"2.627]10~10s~1 [3]; b"0.6 [5];

r
%
"r

1
"r

A
; n"4; t

/
"0 (assumed).

The predicted creep rupture lives using Equation 18
were plotted against the observed values, as illustrated
in Fig. 10. As can be seen in this figure, the prediction
of the time, t

R
, based on the coupled GB diffusion and

PLC shows, however, that Equation 18 results in
a time that is almost twice the actual creep rupture life,
indicating that a better theoretical model is required
that accounts for the gradual accumulation of dam-
age. (In Equation 18 all the cavities are assumed [5] to
nucleate at a strain, e

/
(corresponding to t

/
).) In simple

tension, it was shown [2] that, at one limit (low '@
0
;

large r
A
), the creep life reduces to the value calculated

for GB diffusion alone (Equation 13 or 15); at the
other limit it reduces to the result for power-law creep
alone (Equation 20 or 21). Therefore, it is interesting

Figure 10 Linear correlation between the observed creep rupture
lives and the calculated values using the coupled mechanism be-
tween the GB diffusion and PLC (Equation 18).

to predict the contributions of each of these mecha-
nisms. The following relation was developed for the
PLC mechanism [5]:

t
R
"t

/
# 1

b (n#1)e5
0

lnA
1!(1!f

#
)n`1

1!(1!f
*
)n`1 B A

r
0

r
%
B
n

(21)

Assuming that t
/
"0, that the parameters b, e5

0
and

r
0

constant, that f
*

equals a very small value, that
n"4 and that t

R
J1/r

A
on a log—log scale [29], then

Equation 21 becomes

t
R
Jr4

A
ln[1!(1!f

#
)5]"A (22)

The relative contribution of PLC to the overall creep
rupture life was calculated using ‘‘A’’ in Equation 22,
and that the observed creep rupture life was plotted
against A, as seen in Fig. 11. This plot indicates that
increasing the PLC contribution above a critical value
increases the creep rupture life sharply. The relative
contribution of the GB diffusion and PLC mecha-
nisms were also predicted by establishing the A/B
ratio. Fig. 12 illustrates the plot of creep rupture life
against this ratio; decreasing this ratio (increasing the
GB diffusion contribution and decreasing the PLC
contribution) continuously improves the creep rup-
ture life. From the slopes of this curve at various
points it is concluded that the GB diffusion contribu-
tion rate is approximately four orders higher at point
D compared with that at point E.

4. Summary and conclusions
Analysis of material fracture frequently considers the
initiation and propagation of cracks and the final
failure as three individual steps. Each step can be
analysed separately. For the prediction of the creep
life the growth of intergranular creep cavities has been
studied in CC MAR-M 002 alloy tested at 900 °C
over a limited range of stress (r

A
"200—400 MPa).

The creep rupture life can be improved sharply by
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Figure 11 Contribution of the PLC creep to the creep rupture life,
t
R
, increases with increasing ‘‘A’’.

Figure 12 Relative contributions of the PLC and the GB diffusion
mechanisms to the creep rupture life.

decreasing the GB damage, ¸
T
, below its critical value

(about 20 mm~1). The non-linear dependence of t
R

on
the diffusion parameter, B (Fig. 9), indicates that a GB
diffusion-controlled process in the tertiary region can
be discounted. In fact, the coupled PLC with GB
diffusion mechanism was predicted to be operative in
the tertiary region. In the present work, two different
approaches have been used for the prediction of creep
rupture life, t

R
: firstly empirical approach; secondly the

cavity growth mechanism (approach) that controls the

fracture process. It was found that the number, N
A
, of

cavities per unit area is linearly related to the time-
dependent creep strain e

R
, stress, r

A
, and creep rup-

ture life, t
R
, through the e

R
t
R

r4
A

parameter. Therefore,
using the cavity population (cavity density) and this
parameter the creep rupture life can be predicted reas-
onably well.

Another empirical approach, is the simple creep
fracture parameter, K

&
, developed using the modified

Griffith—Irwin type of relationship, which can be used
to predict the creep rupture life. The fact that in
K

&
Jt~3.6

R
relationship the exponent of rupture life is

quite close to the effective stress exponent in the PLC
(i.e., n " 4) suggests that the creep rupture process in
the tertiary creep region is somewhat related to the
PLC in the secondary creep region.

Edward and Ashby [2] have proposed a model
which explicitly yields equations for t

R
governed by

either PLC or by a coupled GB diffusion—PLC pro-
cess. Because of the simplified constitutive laws used
to describe creep deformation and diffusive growth,
these solutions only approximate the physical pro-
cesses occurring [2, 5]. In the coupled growth model
developed by Edward and Ashby, which is the pre-
dicted operational cavity growth model in the present
conditions, the material diffused from the internal
cavity surface is accommodated by creep deformation
(PLC) of the matrix adjoining the cavity. This shortens
the effective diffusion path length and results in a fas-
ter rate of cavity (i.e., decreased t

R
) than would occur

by either GB diffusion or PLC alone. In fact, as shown
in Fig. 11, when the PLC contribution to the GB
diffusion increases, the creep rupture life continuously
decreases as a result of the increased GB damage
accumulation, ¸

T
(Fig. 8). The linear correlation be-

tween predicted and observed creep rupture life
(Fig. 10) indicates that the main factor controlling the
life of a material, when failure is an intergranular
process (controlled by GB diffusion and PLC), is the
cavity growth. Thus, it is imperative that factors con-
trolling cavity growth mechanism be identified first.
However, this prediction based on the coupled GB
diffusion and PLC overestimates the time, t

R
, indicating

that a more refined model is required that accounts for
the gradual accommodation and shape of cavities.
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